
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

10

15

20

25

30

1 Biodiversity and biogeography of hydroids across marine ecoregions and provinces of    

southern South America and Antarctica   

Thaís P. Miranda* 1, Marina  O.  Fernandez2, Gabriel N. Genzano 3, Álvaro L. Peña   

Cantero4, Allen G. Collins 5  & Antonio C. Marques 2  

1Departamento de Biologia Animal e Vegetal, Centro de Ciências Biológicas,  

Universidade Estadual de Londrina, PR, Brazil, 2Departamento de Zoologia, Instituto de  

Biociências, Universidade de São Paulo, São Paulo, SP, Brazil, 3Estación Costera J.J.  

Nagera, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata,  

Argentina. Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de  

Investigaciones Científicas y Técnicas (IIMyC-CONICET), Argentina.,  4Instituto 

Cavanilles de Biodiversidad y Biología Evolutiva/Departamento de Zoologia, 

Universidad de Valencia, Valencia, Spain,  5National Systematics Laboratory of 

NOAA's Fisheries Service, National Museum of Natural History, Smithsonian 

Institution, Washington, DC, USA.  

*Corresponding author  

ABSTRACT  

To better understand the polar connections between and among benthic communities     of 

southern South America and Antarctica  (SSA & A) , we used hydroids as a model to   

investigate marine assemblages by evaluating   classic biodiversity-biogeographic  

divisions  at  different spatial resolutions. Using a georeferenced dataset of 249 species     

and multivariate analyses, we evaluated biodiversity and defined assemblages of    

ecoregions and provinces for the area. Species’ distributions, compositions and     

biogeographic connectivity were investigated. Hotspots of rich biodiversity at risk of    

depletion were defined according to specific biogeographic processes in the evolution of  

the distribution and endemism of hydroids. Analyses of ecoregions have a more        

stratified biogeographic structure, and reveal critical regions susceptible to loss of  

faunistic and habitat diversity. Analyses of provinces show a clear division between   

Atlantic-Pacific and Antarctic-Subantartic assemblages, with high biogeographic     

isolation of the Subantarctic islands. Depending on spatial resolution, the biogeographic   

position of the Magellan area  is spatially contradictory, clustering on the one hand with 

SSA  ecoregions, and on the other with Antarctic provinces. Our marine biogeographic      
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32 patterns appear to be driven by different combinations of processes and barriers,     

reflected in the stratified distribution of hydroids. The high level of endemi   sm  and 

concentration of species at the edge of distribution in the Magellan area and Scotia Arc  

suggest that they are transitional in nature and particularly important for understanding      

the historical and ecological connections between the Pacific, Atlantic and Southern    

oceans.  

KEYWORDS: marine biogeography, biodiversity, Hydrozoa, Southern Ocean,   

community structure, endemism.  

INTRODUCTION  

The southern South America (SSA) coast extends from ~22°S to 56°S,      

encompassing ~10,000 km of coastline washed by the Atlantic and the Pacific o    ceans  

(Miloslavich et al. 2011). It comprises several different geographic features and marine     

ecosystems (e.g., archipelagos, channels, estuaries, lagoons, mangroves,  rocky shores, 

sandy beaches, seagrass beds), supporting a high, but     still poorly known, marine  

biodiversity (Acha et al. 2004; Costello et al. 2010; Miloslavich et al. 2011).    

Historically, part of the marine fauna of the Atlantic and Pacific is shared with the  

Southern Ocean  due to the past connection between southern South America and   

Antarctica (SSA & A). Antarctica, however, has been isolated for the last   ~25 million  

years contributing to the high incidence of endemic marine species   (e.g., Lawver and  

Gahagan 2003).  

The region has been classified according to many biogeographic schemes based 

on different taxa (e.g., Gibbons 1997; Linse et al. 2006; Griffiths et al. 2009), but  

usually focusing on single oceans (e.g., Gibbons 1997; Douglass et al. 2014; Koubbi et  

al. 2014; Acha et al. 2020) or on global studies (e.g., Costello et al. 2017; Watling et al. 

2013; Sutton et al. 2017), obscuring detailed biogeographic patterns of the SSA & A.     

The Marine Ecoregions of the World (MEOW) and the pelagic provinces of the world    

(Spalding et al. 2007, 2012), however, provide nested systems of classification of the    

oceans that combine    small-scale  spatial units, practical utility and strong databases,   

facilitating biogeographic analyses along SSA & A. Both systems are commplementary      

and preserve many common elements of previous global/regional biogeographic   

classifications (e.g., Briggs 1974), including different levels of endemism. The  ir  

ecoregions and provinces are defined as cohesive units   applicable to the broad life    
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history processes of most mobile, sedentary and dispersive species (e.g., cnidarians of 

the class Hydrozoa; Spalding et al. 2007). As such, they are widely used for biodiversity 

and biogeographic studies wordwide (Poore and Bruce 2012; Vilar et al. 2019; 

Palomares et al. 2020; Summers and Watling 2021). 

Along the SSA & A coasts, hydroids – the polyp stage of the cnidarian class 

Hydrozoa (Cornelius 1992) – are abundant in benthic communities, being usually 

among the first organisms to settle available space and having the capacity to grow 

quickly on several natural and artificial substrates (Gili and Hughes 1995; Genzano et 

al. 2009). Recent phylogenetic studies have identified several likely clades 

corresponding roughly to the suborder or order level in hydrozoan classifications, 

including Limnomedusae, Leptothecata, Aplanulata, Capitata, and Pseudothecata; the 

latter three taxa along with a few other groups of “Filifera” are still united under a non-

monophyletic “Anthoathecata” (Collins et al. 2006; Cartwright et al. 2008; Leclère et al. 

2009; Kayal et al. 2015; Maronna et al. 2016; Mendoza-Becerril et al. 2018). 

Hydroids are widely-distributed in marine benthic stubstrates, occurring from 

shallow coastal to abyssal habitats (Gili and Hughes 1995; Gravili 2016). Geographic 

records of hydroids are directly related to the wordwide distribution of hydrozoan 

taxonomists. The Mediterranean sea, for example, has a comparatively high richness of 

known hydrozoan species but also concentrates a large number of specialists in 

Hydrozoa and is one of the best studied areas of the world (González-Duarte et al. 2015; 

Gravili et al. 2013; Gravili 2016). In contrast, the deep-sea, polar regions, and vast areas 

of the South Atlantic and South Pacific have significant knowledge gaps (Henry et al. 

2008; Genzano et al. 2009, 2017; Peña Cantero 2014; Ronowicz et al. 2015; Fernandez 

and Marques 2018). Nevertheless, recent studies in these areas are building biodiversity 

knowledge about Hydrozoa, allowing for reports on patterns of richness, endemism, 

dispersal, and bathymetrical and latitudinal distributions (Genzano et al. 2009, 2017; 

Gibbons et al. 2010a, b; Mercado Casares et al. 2017; Ronowicz et al. 2019; Fernandez 

et al. 2020). 

Wider or patchier geographic distributions of hydroids generally result from 

different dispersal capabilities, biotic interactions, substrate availability and 

environmental preferences (Cornelius 1992; Gili and Hughes 1995). Despite being 

relatively well known since the 19th century in the Chilean Patagonia (from ~40°S to 

56°S), the southeastern Brazilian and Buenos Aires coasts (from ~20°S to 40°S) and the 

Antarctic Peninsula (from ~60°S to 75°S) (Peña Cantero 2014; Oliveira et al. 2016), 
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hydroids are still poorly known from the Argentinian Patagonia (from 40°S–55°S), and 

along the east coast of Antarctica (from 60°S–70°S 0°–180°E). Many records are 

associated with contradictory identifications or are referred to cryptic species (e.g., 

species of Campanulariidae and Sertulariidae; Moura et al. 2011; Cunha et al. 2015, 

2017), and thus are likely to benefit from a taxonomic review prior to biogeographic 

inferences. The first steps to minimize biases in biogeographic studies are defining the 

species pool under study, intensive and careful field surveys (particularly in poorly 

explored regions), and detailed cleaning and quality control of taxonomic and spatial 

data (Yang et al. 2013; Khalighifar et al. 2020). The use of measures of biodiversity that 

are highly dependent on equal sampling effort (e.g., richness) is challenging because 

these measures may generate biased conclusions (Hortal et al. 2007; Clarke et al. 2014). 

Alternative approaches employing taxonomic distinctness, which measures the 

biodiversity at the taxonomic level, allow for the comparison of diversity between 

unequal samples (Clarke et al. 2014). For conservation purposes, taxonomic distinctness 

provides a high level of accuracy for the description of patterns of biodiversity, being 

highly applicable for qualitative datasets and species lists with presence/absence data 

(Clarke and Warwick 1998, 2001; Clarke et al. 2014). 

The coasts of SSA & A were connected until at least ca. 30 Ma ago (Lawver and 

Gahagan 2003). The distributions of biological communities along these continents 

have been separated into different marine realms, provinces and ecoregions (viz., 

Spalding et al. 2007, 2012), encompassing the southwestern Atlantic, the southeastern 

Pacific and the Southern Ocean. For hydroids, the area is classically divided in 

Patagonia, the Antarctic region, and the Scotia Arc, the latter traditionally considered as 

a biogeographic bridge between both continents (Mercado Casares et al. 2017). Recent 

studies involving hydroid distributions show that the Scotia Arc has higher faunistic 

affinity to Antarctica than to Patagonia, and they suggest that the Polar Front is an 

important biogeographic barrier in the area (Soto Àngel and Peña Cantero 2017). 

Studies with other marine taxa, however, suggest that the colonization of Antarctica was 

not necessarily from the Magellan area via the Scotia Arc (Mühlenhardt-Siegel 1999), 

implying that the connectivity of the latter is likely scale-and taxon-dependent (Moon et 

al. 2017), and that the permeability of the Polar Front and the Antarctic Circumpolar 

Current (ACC) is likely higher than once presumed (Sanches et al. 2016). 

The area between SSA & A represents a complex and interesting biogeographic 

laboratory to study the composition, biodiversity and distribution of marine species in 
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132 an ecological and historical context. Here, we study the marine hydroid fauna of SSA &    

A in order to (1) update the taxonomic status of the species present, (2) evaluate species           

endemism, (3) assess  distribution patterns of species  and community composition along 

Spalding’s ecoregions and provinces, and (4)  assess the biogeographic connectivity   

between SSA & A. We hypothesize that the biodiversity and faunistic composition of      

assemblages are scale-dependent and vary across Spalding’s ecoregions and provinces.   

Also, taxonomic distinctness is likely to be higher in the better sampled areas   , such as  

the Southwestern Atlantic and the Antarctic Peninsula, and that endemism increases   

southwards.  

MATERIAL AND METHODS  

Area of study  

The study area comprises the marine benthic habitats     of southern South America  

(both the southwestern Atlantic and the southeastern Pacific oceans) and Antarctica      

(including the Southern Ocean) from 20°S to 80°S, from shallow waters to ~5,000m      

depth. The main oceanographic currents influencing the area are the Humboldt system  

along the Pacific side, the Brazilian and Falklands/Malvinas currents  along the Atlantic  

side, and the Antarctic Circumpolar Current (ACC) of the Southern Ocean (Acha et al.    

2004).  

The area was divided in 25 ecoregions (Fig. 1a) and 10 provinces (Fig. 1b)    

following the global biogeographic classification proposed by Spalding et al. (2007)   –  

the Marine Ecoregions of the World (MEOW) – and three additional Antarctic pelagic      

provinces of Spalding et al. (2012) – used only for the Antarctic ecosystem because       

several Antarctic and subantarctic records  are beyond the coastal and shelf areas    

presented by Spalding et al. (2007). Despite being proposed for pelagic waters, these     

provinces agree with many Antarctic biogeographic benthic systems   delimited for  

different taxa (e.g., Linse et al. 2006; Clarke 2008; Griffiths 2010; Pierrat et al. 2013),    

as well as with recent proposals included in the Biogeographic Atlas of the Southern 

Ocean (De Broyer and Koubbi 2014). W  e chose these large-  scale biogeographic  

classification systems because they were developed under the same methodology for     

both the ecoregions and provinces of SSA & A, enhancing the coherence and robustne    ss 

of our biogeographic analyses. Using both the ecoregions and provinces proposed by       

Spalding et al. (2007, 2012),  we  approach the data from different biogeographic    

133 

134 

136 

137 

138 

139 

141 

142 

143 

144 

146 

147 

148 

149 

151 

152 

153 

154 

156 

157 

158 

159 

161 

162 

163 

5 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

165

170

175

180

185

190

195

164 perspectives – from    smaller  and larger scales, respectively – allowing for   a more  

complete understanding of the distribution data and the biodiversity of hydroids.          

Data  collection  

Hydroid specimens (hydrocorals excepted) collected in the field and from     

museum and university collections, from 1,360 geographic     sites  along the SSA & A   

coasts, were examined. All specimens collected in the field were deposited in the   

Marine Invertebrates Collection of the Museu de Zoologia  of the University of São  

Paulo. A qualitative approach was required due to (1) the lack of standardized    

collections available at universities and museums, (2) the lack of knowledge of large    

marine areas of SSA & A, (3) and the availability of unexamined and unpublished    

records of hydroids in university and museum collections . While less suitable than  

quantitative sampling for estimating the richness and abundance of species in  

communities, qualitative surveys are advantageous  in that they maximize the   

exploration of poorly studied areas and uncover new records that increase knowledge of    

species distributions (Hortal et al. 2007; Clarke et al. 2014). As our focus is to update      

knowledge of the taxonomic composition of hydroid species in SSA & A and to use    

these observations in order to make biogeographic inferences, we placed considerable     

effort on maximizing the taxonomic quality of our presence/absence data.       

We personally identified specimens and checked all collection  and geographic  

information in the literature, thereby guaranteeing taxonomic uniformity and geographic     

accuracy; as required for large-scale biogeographic studies (Hortal et al. 2007; Santos   et 

al. 2010; Di Camillo et al. 2018). This approach is particularly essential for    

taxonomically  complex groups, given that available databases   have non-uniform  

identifications and extensive taxonomic revisions have recently been produced (e.g.,        

Peña Cantero 2014; Oliveira et al. 2016). We compiled a list of the species studied and       

their geographic distribution by ocean  and/or sea of occurrence (Online Resource Table   

S1); the endemic species were classified     in  eight categories  of endemicity along SSA &  

A, and according to their distribution and traditional biogeographic classifications of the   

area (Balech 1954; Palacio 1982): species endemic to (1) the whole area of study, i.e.,   

from 22°S to 78°S, (2) tropical areas, i.e., from 22°S to 30°S, (3) tropical and 

subtropical areas, i.e., from 22°S to ~43°S, (4) subtropical areas, i.e., from 30°S to 

~42°S, (5) subtropical and Magellan areas, i.e., from 30°S to 60°S, (6) the Magellan 

area, i.e., from ~42°S to 60°S, (7) the Magellan and Antarctic areas, i.e., from ~42°S to 
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197 78°S, and (8) the Antarctic area, i.e., ~60°S to 78°S (Online Resource Table S1).    

Literature records of hydroids were not herein    listed,  as this has already been done    

elsewhere (Ronowicz et al. 2019; Oliveira et al. 2016). Exceptions are the Antarctic   

records of Corymorpha microrhiza   (Hickson & Gravely, 1907) and   Zyzzyzus parvula   

(Hickson & Gravely, 1907) from Svoboda and Stepanjants (2001), which were included     

after studying the specimens at the National Museum of Natural History, Smithsonian    

Institution. The taxonomy of all species was standardized following the pertinent      

literature to the ir  area of occurrence (Oliveira et al. 2016 and references therein;    

Ronowicz et al. 2019 and references therein; Schuchert 2021). Species were   

phylogenetically  classified according to Maronna et al. (2016), Mendoza-Becerril et al. 

(2018) and Schuchert (2021).   

Multivariate analyses   

We included only georeferenced records that were identified to the speci    es  level  

in the analyses. Records only to the genus or family level, (e.g.,     Sphaerocoryne  sp.,  

Eudendriidae not identified) and dubious records (e.g., ?   Hybocon chilensis, or Hebella  

?striata) were excluded from the analyses. For the ecoregion analyses, records of   

Oswaldella gracilis, Staurotheca abyssalis  and Symplectoscyphus liouvillei  collected 

from outside coastal and shelf areas   of SSA & A were excluded.   

All multivariate analyses were conducted twice, comparing assemblages from      

ecoregions and provinc es.  To compare species richness between equally large samples  

and to evaluate sampling effort between assemblages, we calculated sample-based 

rarefaction curves of estimated richness by sampling unit in each assemblage. Each 

sampling unit is a geographic site, represented by a unique pair of latitude and longitude  

coordinates, and may have one or more species records.    

To compare the biodiversity of hydroids at different taxonomic levels   between  

assemblages, we used the average taxonomic distinctness (AvTD) and the variation in   

taxonomic distinctness (VarTD). Both AvTD and VarTD are unbiased statistical   

diversity measures, applicable to presence/absence data, and  unsensitive to sampling 

effort, size and dominant species  (Clarke et al. 2014). They use the Linnaean   

classification relationships between species to  test for biodiversity changes among  

assemblages, qualitative ly  comparing their taxonomic distinctness   given a master list of  

species observed in an area (i.e., the “species pool” of SSA & A) (Clarke and Gorley      

2015). The AvTD of an assemblage is a reflection of  the taxonomic distance across the  
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taxonomic hierarchy of a master list of species observed for the whole area of study 

(i.e., the species inventory), without the effect of species abundance distribution (Clarke 

& Warwick 2014). It is defined as the ratio between the average taxonomic distance 

(i.e., the expected path length in the classification tree between any two individuals 

chosen at a random) and the Simpson diversity index (i.e., the probability that any two 

individuals selected at a random belong to the same species) of a sample (Warwick and 

Clarke 1995; Clarke et al. 2014). The VarTD is the variance of the taxonomic distances 

between each pair of species, representing the unevenness of the classification tree (i.e., 

reflects different classification tree constructions) (Clarke and Warwick 2001; Clarke et 

al. 2014). Both AvTD and VarTD of an assemblage can be tested from the master list of 

species which encompasses the taxonomic boundaries of the classification tree related 

to the inventory, and the suitable biogeographic limits from which the species were 

documented. As taxonomic distinctness measures are independent of sampling effort, it 

is possible to compare the AvTD and VarTD of a subset of species in an assemblage 

with those of the master list to check if they represent the biodiversity expressed in the 

full species inventory. Therefore, the AvTD and VarTD for the master list correspond to 

the expected values for the whole faunal group (Clarke et al. 2014). Analyses of 

taxonomic distinctness were performed using seven taxonomic levels (superorder, 

order, suborder, infraorder, family, genus and species) and equal weights between them. 

Hydroid distributions, compositions and biogeographic connectivity across 

assemblages were investigated based on Bray-Curtis similarities of presence/absence 

data. Assemblages were clustered using the group-average method, and the similarity 

profile test (SIMPROF) was used to test for statistically significative clusters. To 

identify the species that mostly contributed to the internal similarity within clusters, and 

for the overall dissimilarity between clusters, the similarity percentages routine 

(SIMPER) was used, with a cut-off value for low contributions of 70%. This method 

compares two clusters at a time and identifies the most influential species for its 

similarities, through the decomposition of the Bray-Curtis dissimilarity index between 

the species (Clarke et al. 2014). 

A non-metric multidimensional scaling (nMDS) with 50 interactions was also 

performed to assess gradual faunistic changes between the assemblages. To test for 

differences in species composition between assemblages, the one-way analysis of 

similarity test (ANOSIM) with 999 permutations was calculated (Clarke and Green 

1988). Finally, we used BVSTEP, a stepwise routine that searches for the smallest 
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264 subset  of species contributing most for the nMDS pattern (Clarke et al. 2014).      All 

multivariate analyses were performed using the software Primer-e v. 7 (Clarke and   

Gorley 2015).  

RESULTS  

A total of 5,622 records and 357 morphospecies of hydroids – representing 2      

superorders, 8 orders, 5 suborders, 4 infraorders, 38 families, 83 genera, and 256   

identified species – were documented for the 1,360 sampling sites along the SSA & A.        

Seven singleton non-georeferenced records (i.e.,    Acryptolaria crassicaulis, 

Corydendrium parasiticum, Cryptolarella abyssicola, Filellum bouvetensis, Halecium  

secundum, Sertularella uruguayensis, Zygophylax infundibulum; Online Resource Table   

S1) were excluded, reducing the number of analysed species to 249. Three species are   

new records for the Southwestern Atlantic Ocean (Nemertesia ciliata, Sertularella 

leiocarpa, and Zygophylax sibogae), and 128 are endemic to SSA & A, corresponding    

to ~51% of the total species  recorded (Fig. 2; Online Resource Table S1). Among the        

endemic species, the proportion of endemism  increases towards Antarctica ( Fig. 3 ; 

Online Resource Table S1).    

Eighty-eight percent of the species (226 of 256) belong to the superorder 

Leptothecata, 9% (24 of 256) to  “Anthoathecata” (i.e., “Filifera”, Capitata and  

Aplanulata), and 3% (6 of 256) to Pseudothecata. The majority of the species belong to   

the order Macrocolonia (175 of 256 species); the most speciose families are    

Symplectoscyphidae (30 species), Kirchenpaueriidae (29 species) and Staurothecidae  

(23 species). The most speciose genera are  Oswaldella  (26 species),  Staurotheca  (24  

species), Symplectoscyphus  (21 species),  Sertularella  (14 species) and    Halecium  (12  

species), which together encompass ~38% of the 256 identified species   (Online  

Resource Table S1).    

Rarefaction curves do not reach a clear asymptote for any of the ecoregions and    

provinces analysed, providing evidence that sampling effort along SSA & A is unequal     

and still deficient (Figure 4). However, within all biogeographic units analysed,  

ecoregions 180, 183, 185, 187, 220, 222, 223, 227, and 229 appear to be closer to     

reaching  an  asymptote (Fig. 4a), as well as curves CHA, M, SS and WTSWA for      

provinces (Fig. 4b).    

Regarding taxonomic distinctness, eleven ecoregions have AvTD values within  

the 95% interval of expectation of the master list, three ecoregions (180, 181 and 183)   
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have AvTD values above it, and ten have AvTD values below the expected (Fig. 5a; 

Table 1). Most VarTD values were within the expected, with exceptions of above 

expectation values for ecoregions 177, 222, 223, 227 and 229 (Fig. 5b; Table 1). For 

provinces, most AvTD values were within or below the expected, except for WTSWA 

(Fig. 6a; Table 2). The VarTD values were also mostly within the expected for each 

area, except for above expected values for provinces A, CHA and SS (Fig. 6b; Table 2). 

Bray-Curtis and SIMPROF analyses showed 17 statistically significant clusters 

for the ecoregions (Fig. 7a) and 7 statistically significant clusters for the provinces (Fig. 

8a). For both ecoregions and provinces, analyses divide the whole area of study between 

southern South American (E10 to E17 and P1 to P2; Fig. 7a) and Antarctic assemblages 

(E1 to E9 and P3 to P7; Fig. 8a). The Magellan area (ecoregions 185 to 187 and 

province M; Fig. 1) clusters with SSA assemblages when ecoregions are analysed (Fig. 

7a), but with Antarctic assemblages when provinces are considered (Fig. 8a). SIMPER 

analyses show great variation in species composition within and between assemblages, 

for both ecoregions and provinces (Online Resource Tables S2, S3). 

Along the southwestern Atlantic coast, assemblages E11 and P2 in particular 

(Fig. 1, 7a, 8a), have similar composition of non-endemic species widely distributed 

along tropical and subtropical areas (e.g., Dynamena spp., Sertularia spp., among 

others; Online Resource Tables S1–S3), including records for the Caribbean (cf. Calder, 

1988, 1991). Endemic species along the southwestern Atlantic were found in 

assemblage E17 (as well as other species widely distributed across the world), all of 

them distributed among the categories tropical+subtropical, subtropical+Magellan and 

Magellan+Antarctic (Fig. 1a, 7a; Online Resource Tables S1, S2). Along the Pacific 

coast, SIMPER suggests that WTSEP (Fig. 1b, 7) as an assemblage with few endemic 

species, distributed along the Subtropical (e.g., Sertularella mixta, Thuiaria polycarpa), 

subtropical+Magellan (e.g., Sertularella fuegonensis) and Magellan+Antarctic (e.g., 

Halecium interpolatum) categories of endemicity (Online Resource Tables S1, S3). The 

presence of Coryne eximia, Obelia dichotoma and Plumularia setacea along the 

northern Chilean coast (176, 177), the Chilean Patagonia (178, 188), the southern Brazil 

(181) and the Río de La Plata Estuary (182), gather these ecoregions in assemblage E13, 

with lower internal similarity value but connecting the Pacific and the Atlantic coasts of 

SSA (Fig. 1a, 7a; Online Resource Table S2). The most dissimilar assemblage in SSA is 

E14 (Fig. 1a, 7a; Online Resource Table S4), with a mix of endemic species from 

tropical+subtropical (e.g., Sertularella fuegonensis), Magellan (e.g., Sertularella 
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jorgensis), and Magellan+Antarctic ranges (e.g., Abietinella operculata) (Online 

Resource Tables S1, S2). Assemblage E16 correponds to the Magellan area, composed 

of endemic species from tropical+subtropical (e.g., Corymorpha januarii), Magellan 

(e.g., Orthopyxis hartlaubi) and Magellan+Antarctic categories of endemicity (e.g., 

Halecium interpolatum), in addition to some widely distributed species (Fig. 1a, 7a; 

Online Resource Tables S1, S2). 

Our results suggest that Antarctic assemblages are biogeographically divided 

between the subantarctic islands (i.e., assemblages E2 and SI) and the Scotia Arc plus 

the rest of the Antarctic ecosystem (assemblages E3 and P4) (Fig. 1a, 7a, 8a). E2 

clusters Bouvet Island and Peter I Island by the presence of Antarctoscyphus spiralis 

and Staurotheca dichotoma (Fig. 1a, 6a; Online Resource Table S2). SI gathers Bouvet, 

Prince Edwards, Crozet, Kerguelen islands, being the most dissimilar assemblage of 

provinces (Fig. 1b, 8a; Online Resource Table S5), composed of endemic species from 

the Magellan+Antarctic category (e.g., Oswaldella erratum, O. vervoorti, Schizotricha 

vervoorti, Staurotheca dichotoma, S. vanhoeffeni) but also by rare (e.g., Staurotheca 

echinocarpa) and widely distributed species (e.g., Symplectoscyphus subdichotomus) 

(Online Resource Tables S1, S3). South Georgia and South Sandwich Islands, which are 

part of the Scotia Arc, are represented by assemblage E5, with most endemic species 

from Magellan+Antarctic category (mainly Antarctoscyphus spp., Oswaldella spp., and 

Staurotheca spp.) (Fig. 1a, 7a; Online Resource Tables S1, S2). The west coast of the 

Antarctic Peninsula corresponds to assemblage E9 (Fig. 1a, 7a), composed of species 

distributed in a few lower taxonomic levels (e.g., genus and family levels) and by a high 

number of species endemic from Antarctica (e.g., Antarctoscyphus spp., Oswadella 

spp., Clathrozoella medeae, Mixoscyphus antarcticus, Schizotricha crassa, S. nana, S. 

vervoorti, Staurotheca antarctica) (Online Resource Tables S1–S3). This faunistic 

pattern was also found in P5, corresponding to the whole coast of Antarctica (Fig. 1b, 

8a). APF is composed of endemic species from Magellan (e.g., Acryptolaria spp., 

Clathrozoella abyssalis, Oswaldella elongata, Sertularella jorgensis, Staurotheca 

abyssalis, S. profunda, S. vervoorti) and Magellan+Antarctic categories (e.g., 

Antarctoscyphus elongatus, Schizotricha vervoorti, Staurotheca jaederholmi, S. 

pachyclada), besides some worldwide distributed species (e.g., Amphisbetia operculata 

and Sertularella gaudichaudi) (Online Resource Tables S1, S3). 

The nMDS ordination plots reflect the same biogeographic division between the 

assemblages of SSA & A found in the cluster and SIMPROF analyses (Fig. 7, 8). 
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Additionally, a gradual variation in species  composition along the ecoregions and  

provinces was observed (Fig. 7b, 8b). The adjacent ecoregions 76 and 180, for example,       

have similar species composition, while ecoregion 186, although more isolated, is more    

similar in species composition to ecoregions 187 and 188 (Fig. 1, 7b). The   

geographically isolated province SI has a unique species composition, while adjacent      S 

and APF are more closely related to each other (Fig. 8b). The BVSTEP routine    

identified five species (correlation 0.815) better matching the pattern of the nMDS   

ordination of the ecoregions:  Antarctoscyphus spiralis, Billardia subrufa, Halecium  

jaederholmi, Staurotheca dichotoma, and S. glomulosa. For the province nMDS   

patterns, BVSTEP identified 15 species (correlation 0.952):  Acryptolaria conferta, A. 

operculata, Aglaophenia latecarinata, A. trifida, Antarctoscyphus grandis, 

Clathrozoella abyssalis, Halecium pallens, Obelia dichotoma, Schizotricha vervoorti, 

Sertularella gaudichaudi, S. mixta, S. polyzonias, Staurotheca antarctica, S. dichotoma, 

and S. echinocarpa.  

Although R values are low, the ANOSIM global     test resulted in significantly  

different species composition among both ecoregions (R=0.192, p=0.1%) and provinces       

(R=0.11, p=0.1%). Pairwise tests show significantly different faunistic composition    

between most ecoregions and most provinces, with few exceptions (Online Resource    

Tables S6, S7).   

DISCUSSION  

Despite the unavoidable unequal sampling along the ecoregions and provinces of   

SSA & A, the patterns herein documented are related to the geographic    scale, reflecting  

its evolutionary and environmental aspects, and evidencing their biogeographic  

connection. Also, the distribution of hydroids along SSA & A    is driven by a   

combination of barriers of varying intensity for different species, modulating dispersal  

over long distances.  

Faunistic composition  

The 256 species of hydroids studied here represent ~7% of the total species of     

Hydrozoa described in the world (Schuchert 2021), and ~30% of   all species of hydroids   

recorded for South America and Antarctica (Ronowicz et al. 2019; Oliveira et al. 2016). 

Leptothecata (88% of the species) dominates over “Anthoathecata” and Pseudothecata   
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396 (9% and 3% of the species, respectively) – a similar proportion found in other parts of   

the world, such as tropical (Calder 1993; Di Camillo et al. 2008) and subtropical areas     

(Genzano et al. 2017; Ajala-Batista et al. 2020), the Mediterranean (Bouillon et al.  

2004; Gravili et al. 2013), the Arctic (Ronowicz et al. 2015) and the Antarctic (      Peña  

Cantero 2014; Soto Àngel and Peña Cantero 2019; Peña Cantero 2021). The high     

proportions of Leptothecata over Anthoathecata  is at least partially due to the  

destructive sampling of unprotected polyps (i.e., anthoathecates   ) (Peña Cantero, 2004),  

although  it  may be more related to evolutionary and ecological factors than to  sampling  

biases (Fernandez and Marques 2018; Fernandez et al. 2020). Symplectoscyphidae    is 

the most speciose family in the study area (Online Resource Table S1) (cf. Soto Àngel     

and Peña Cantero 2019; Peña Cantero 2021), although Haleciidae   is the most speciose  

hydrozoan family in South America (Oliveira et al. 2016).  Among genera, Oswaldella, 

Staurotheca, Symplectoscyphus, Sertularella  and  Halecium  are the most speciose genera  

for SSA &, corroborating previous findings (cf. Peña Cantero 2014; Oliveira et al. 

2016; Soto Àngel and Peña Cantero 2019).  

Sampling effort, biodiversity and taxonomic distinctness  

Sampling effort along SSA & A is unequal and none of the rarefaction curves    

reached an  asymptote. Therefore the biodiversity of the region is underestimated,  

hindering full biogeographic comparisons among the ecoregions and provinces.    

However, exhaustive sampling effort for large-scale areas is challenging, and  

geographical gaps in knowledge of taxa is  the usual situation in studies making  

biodiversity inferences (Hortal 2008; Fernandez et al. 2020).    

Taxonomic distinctness (i.e., AvTD and VarTD) are useful  measures to  

characterize differences in taxonomic structure across SSA & A, revealing areas with     

apparent loss es  or gains of biodiversity, or reduced habitat diversity (Clarke and  

Warwick 2001;  Clarke et al. 2014). High values of AvTD (e.g., ecoregions 180, 181,   

183 and province WTSWA;  Fig. 1, 5a, 6a; Tables 1, 2), for example, are related to  gains  

of biodiversity. This pattern suggests that   the southeastern Brazilian and the Buenos  

Aires coasts concentrate intensive efforts in studies of marine biodiversity, possibly       

related to  higher  availability of suitable habitats for hydroid occurrence, such as hard   

substrata and rocky shores, and the ease of access to shallow -water environments  

(Miloslavich et al. 2011, 2016).  
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Low values of AvTD are related to loss of biodiversity, as evidenced for the 

Antarctic and sub-Antarctic ecosystems (e.g., ecoregions 219 to 224, 226, 227, 229, 

provinces A, CHA, S, SI, SS; Fig. 1, 5a, 6a; Tables 1, 2). The higher resolution analyses 

(i.e., ecoregions) suggest that the Scotia Arc, the Antarctic Peninsula, the Weddel Sea, 

the Ross Sea and Queen Maud Land are more susceptible to biodiversity loss. This 

might be related to their geographic proximity to commercial fishery areas, implying 

transportation of benthic exotic species on ship hulls from the northern oceans (Clarke 

et al. 2005; Scott 2012). An example of possible anthropogenic impacts along the region 

is the presence of the globally distributed Lafoea dumosa and Obelia bidentata in the 

South Orkney Islands, as well as along other Antarctic areas (cf., Online Resource 

Tables S1, S2). 

High values of VarTD, on the other hand, reflect lower habitat diversity, as 

found in ecoregion 177 and province WTSEP (Fig. 1, 5b, 6b; Tables 1, 2). These 

regions correspond to the Chilean coast, historically socio-economically dependent on 

marine resources, and with human activities commonly impacting different habitats 

along the southeastern Pacific (Fernandez et al. 2000; Miloslavich et al. 2016). The 

overexploitation of benthic resources, pollution by sewage discharges and oil spils from 

ships are the main human impacts in the region, possibly associated with habitat 

depauperation and consequently, loss of habitat diversity (Fernandez et al. 2000). 

Ecoregions and provinces with low values of AvTD and high values of VarTD 

(e.g., Antarctic Peninsula, Weddell and Ross seas, i.e., ecoregions 222, 223, 227, 229, 

provinces A, CHA, SS; Fig. 5, 6; Tables 1, 2) are probably related to the presence of 

species’ pools that are unevenly distributed across the taxonomic classification tree and 

which belong to a few high taxonomic groups (Clarke and Warwick 2001; Clarke et al. 

2014; Ronowicz et al. 2015). These regions have a hydroid fauna concentrated in a few 

families and/or genera (e.g., Antarctoscyphus spp. and Oswaldella spp.; Fig. 1, 7, 8; 

Tables S1–S3). A similar pattern was documented for Arctic hydrozoans (Ronowicz et 

al. 2015), presumably related to high speciation (Mayr 1963) and low rates of higher 

taxa diversification along polar regions, also influenced by particular climatologic, 

geologic and oceanographic events (Gillespie and Roderick 2014). 

The other ecoregions and provinces have values of AvTD and VarTD within 

expectation (i.e., within the 95% range of simulated values depart from the one of the 

master list; Fig. 5, 6), meaning that the subsets of species observed in each 
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461 ecoregion/province have the same taxonomic diversity of the whole SSA & A (Fig. 5, 6;         

Table 1, 2).  

Endemism, distribution and biogeographic patterns  

There is a statistically significant separation  between SSA and Antarctic  

assemblages, for both ecoregions and provinces (Fig. 7, 8; ANOSIM test; Online       

Resource Tables S6, S7). This pattern has been shown for other benthic invertebrates     

based on different biogeographic units and molecular  inferences (González-Wevar et al.    

2010; Figuerola et al. 2013; Griffiths and Waller 2016). However, the biogeographic     

affinity of the Magellan area (including the Falkland/Malvinas Islands and the  

Burdwood Bank) is scale dependent and mudd ies the picture somewhat. Magellan   

ecoregions E16 and 186 are grouped with SSA  assemblages, but province P7 is grouped   

with Antarctic assemblages (Fig. 1, 7a, 8a). The Falkland/Malvinas Islands and    

Burdwood Bank (assemblage 186; Fig. 1a, 7a) are currently part of the large    

biogeographic region of Patagonia (42°S–56°S; Acha et al. 2004), which includ   es  the  

Magellan area (Mercado Casares et al. 2017). The Southern tip of South America, the     

Falkland/Malvinas Islands and Burdwood Bank (viz., E16, P7 and 186) are composed    

of species from the Magellan, Antarctic and Magellan+Antarctic categories of      

endemicity (Online Resource Tables S1, S2). Their faunistic composition is unique,    

revealing a dissimilarity higher than 75% in relation to the other assemblages (Online  

Resource Tables S4, S5), corroborating its distinct and complex biogeographic role as a     

center of endemism and route for dispersal of benthic species  (Schejter et al. 2016).  

The nMDS plots also corroborate the conflicting biogeographic position of the   

Magellan area, with the intermediate ecoregions 185, 186 and 187 between SSA & A.    

Province S clusters with Antarctic provinces, and M occupies an intermediate position 

between SSA & A (Fig. 1, 7b, 8b). Although conflicting, these patterns reinforce the     

complex role of the Magellan area as a transition zone connecting the    SE Pacific, the  

SW Atlantic and the Southern Ocean. The high proportion of endemic species with   

different ranges along the Magellan area (Fig. 3) and the high concentration of species     

at the edge of their distributions (Online Resource Tables S1–S3) corroborate its    

transitional nature. The Magellan, the Antarctic and the Magellan+Antarctic ranges of    

endemicity in particular (Fig. 3 ; Online Resource Table S1)  ,  reinforce the hypothesis  

that the Magellan area is a biogeographic corridor for interchange of some species, but    

also a barrier impacting the distribution of others (Balech 1954; Souto  et al. 2014;  
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Sepulveda et al. 2016). This transition area results in species being either geographically 

restricted or dispersed over long distances, mainly through the influence of the ACC. 

The ACC plays a fundamental role in the biogeographic structuring of hydroids 

from the Southern Hemisphere (Marques and Peña Cantero 2010; Miranda et al. 2013; 

Soto-Àngel and Peña Cantero 2017; Mercado Casares et al. 2017), since its circulation 

simultaneously connects the Southern Ocean biota with the rest of the adjacent oceans 

but also isolates Antarctica promoting its high endemism (Sanches et al. 2016). 

Therefore, it is a significant biogeographic barrier to the subtropical, 

subtropical+Magellan and Magellan endemic hydroids, but does not influence the 

distribution of the Magellan+Antarctic species. An example is the intermediate area 

between the subantarctic and Antarctic waters (assemblage APF; Fig. 1b), directly 

influenced by the ACC and more than 88% dissimilar to the assemblages of other 

provinces, with a mixed composition of Subtropical (e.g., Acryptolaria operculata), 

Magellan (e.g., Clathrozoella abyssalis, Oswaldella elongata, Sertularella jorgensis, 

Staurotheca abyssalis, S. profunda and S. vervoorti) and Magellan+Antarctic endemic 

species (e.g., Antarctoscyphus elongatus, Schizotricha vervoorti, Staurotheca 

jaederholmi, S. pachyclada) (Online Resource Tables S1, S3, S5). 

The southwestern Atlantic is also a transition zone characterized by widely 

distributed tropical-subtropical species (assemblages E11 and P2; Fig. 1, 7a, 8a; Tables 

S1–S3 – cf. Palacio 1982; Barroso et al. 2016 for other marine taxa). The Uruguay-

Buenos Aires shelf and the Atlantic Patagonia coast (assemblages E17; Fig. 1a, 7a) are 

characterized by warmer temperate waters (Genzano et al. 2009) with widely distributed 

species, and a few tropical+subtropical, subtropical+Magellan and southern South 

America+Antarctica endemic species (Online Resource Tables S1, S2). The Uruguay-

Buenos Aires Shelf and the Atlantic Patagonia coasts are areas of endemism per se 

(Miranda et al. 2015), although they have a low number of endemic species when 

compared with the Antarctic assemblages (Online Resource Tables S1, S2). 

The convergence zone of the Brazilian and Falkland/Malvinas currents is a 

biogeographic barrier for some species (Miranda et al. 2015; Barroso et al. 2016), but 

some subtropical and Magellan edges of species ranges might extend to latitudes lower 

than 40°S (e.g., 35°–37°S; Genzano et al. 2009; Souto et al. 2014). This is particularly 

supported by Campanularia agas, C. subantarctica, Lytocarpia canepa, Phialella 

chilensis, Sertularella cruzensis, and Symplectoscyphus magellanicus (viz., E17 species 

composition; Online Resource Table S1, S2), and is probably related to the adjacent 
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subantarctic waters and the cooler and more saline waters of the Falkland/Malvinas 

current along the Argentinian continental shelf (Acha et al. 2004). The thermohaline 

front produces flows northwards (Acha et al. 2004; Genzano et al. 2009) and explains 

the presence of subantarctic species at lower latitudes (e.g., along 27°–30°S), such as 

Amphisbetia operculata, Lafoea dumosa, Stegolaria irregularis, and Symplectoscyphus 

subdichotomus (Online Resource Table S1). 

The southeastern Pacific (WTSEP and part of E13 – ecoregion 177; Fig. 1, 7a) 

has a unique set of endemic species from different categories: Tropical (Sertularella 

mixta), Tropical+Subtropical (Thuiaria polycarpa), Magellan+Antarctic (Halecium 

interpolatum) and southern South America+Antarctica (Sertularella fuegonensis). 

Sertularella mixta and Thuiaria polycarpa for example, corroborate the “warm-

temperate north of 35°S” area defined for benthic macroinvertebrates of the 

southeastern Pacific (Lancellotti and Vasquez 1999), while Halecium interpolatum is 

more related to the “cold-temperate south of 48°S” area, reinforcing the position of the 

southeastern Pacific as a mixed biogeographic area (Camus 2001) driven by the 

Humboldt Current system and its upwelling zones. Although being the most isolated 

province among the SSA assemblages (Fig. 8; Online Resource Tables S1, S3), WTSEP 

might be considered a hotspot of biodiversity since it is suffering from loss of habitat 

diversity (see the section above). 

Despite the low internal similarity (29.8%; Online Resource Table S2), E13 is 

connected to the Chilean coast (ecoregions 176 to 178 and 188), the southern Brazilian 

coast (ecoregion 181) and the Río de La Plata Estuary (ecoregion 182) (Fig. 1a, 7) based 

on the presence of the well-known and widely distributed – equatorial to subantarctic – 

Coryne eximia, Obelia dichotoma, and Plumularia setacea (Oliveira et al. 2016; Online 

Resource Table S2). This pattern reflects the Pacific-Atlantic connection driven by the 

Humboldt Current system distributing species from the Pacific to the Atlantic through 

the Cape Horn current (Fernandez et al. 2000; Sepulveda et al. 2016). Its role in shaping 

biogeographic patterns along the Magellan-Antarctic area is poorly understood despite 

the importance of the area as a marine hotspot (Fernandez et al. 2000; Scott 2012; Selig 

et al. 2014; Schejter et al. 2016). The Cape Horn current flows through the Magellan 

Strait, surrounds the tip of South America, and turns northeastwards to form the 

Falkland/Malvinas current (Montiel et al. 2005; Souto et al. 2014; Sepulveda et al. 

2016), which passes through the Scotia Arc and flows northwards meeting the warm 

Brazilian current (at ~36°S–40°S) (Acha et al. 2004). Bio/phylogeographic models have 
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suggested that the formation of the Magellan Strait created a new pathway for faunistic 

interchange between the Pacific and the Atlantic (Montiel et al. 2005; González-Wevar 

et al. 2012; Souto et al. 2014). The intermediate role of the Scotia Arc along the area 

includes dispersal events of species between the Atlantic and Southern oceans (Marques 

and Peña Cantero 2010; Miranda et al. 2013; Mercado Casares et al. 2017). 

The hydroid communities of South Georgia and South Sandwich (cluster E5; 

Fig. 1a, 7) are highly (97+%) dissimilar to those of SSA, and more similar to those of 

Antarctica (Online Resource Table S4). The South Sandwich+South Georgia 

assemblage, therefore, is a unique mixture of Magellan and Magellan+Antarctic 

endemic species (Online Resource Tables S1, S2), corroborating the role of these 

islands as a biogeographic bridge between both continents (Montiel et al. 2005; Dalziel 

et al. 2013; Maldonado et al. 2015; Mercado-Casares et al. 2017). The position of the 

South Orkney Islands (ecoregion 221; Fig. 1a, 7) reinforces the bridge idea because of 

its unique composition of Magellan+Antarctic and Antarctic species (Online Resource 

Table S2), although the assemblage is more similar to that of the Antarctic Peninsula 

(assemblage E9; Fig. 7; Online Resource Table S4). 

Clustering between South Georgia and South Sandwich Islands has been 

commonly demonstrated (Ramos-Esplá et al. 2005; Primo and Vásquez 2009), but 

recent inferences based on hydroids clustered the South Sandwich Islands with Bouvet 

Island, keeping South Georgia with Shag Rocks, although with low internal support 

(Soto Àngel and Peña Cantero 2017). We recovered Bouvet Island with Peter I 

(assemblage E2) despite low internal similarity (i.e., 36.4%; Online Resource Table S2; 

Fig. 1a, 7a), but the analysis with the provinces includes Bouvet Island in SI (Fig. 1b, 

8). The high concentration of endemic (e.g., Magellan+Antarctic and Antarctic) and rare 

species (e.g., Staurotheca echinocarpa; Online Resource Tables S1–S3) around E2 and 

SI suggests that their hydroid communities are truly highly isolated despite being poorly 

known (Fig. 7, 8; Online Resource Tables S4, S5). 

Queen Maud Land (assemblage 226; Fig. 1a) is the most isolated area of 

Antarctica, with a fauna composed only of Magellan+Antarctic and Antarctic endemic 

species of Oswaldella and Staurotheca (Online Resource Tables S2, S4). It is part of the 

Eastern High Antarctica Zone, an Antarctic area of endemism characterized by an 

impoverished fauna of hydroids with vast geographical gaps interrupted by scattered 

records (Marques and Peña Cantero 2010). The faunistics of this area have been poorly 

explored (De Broyer et al. 2011), hindering knowledge on biogeographic patterns, since 
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real absences and insufficient sampling effort are commonly treated together (Gili et al. 

2016; Griffiths and Waller 2016). 

The western Antarctic Peninsula (assemblage E9) has the strongest 

biogeographic structure in the higher resolution analysis, and the whole coast of 

Antarctica and the Scotia Arc (assemblage P5) in the lower resolution analysis (Fig. 1, 

7, 8; Tables S2, S3). These assemblages have an endemic fauna of hydroids with the 

highest internal similarity in relation to other assemblages (Tables S2, S3). The high 

endemicity of the Antarctic Peninsula is likely originated from isolation of an 

epicontinental sea along its northern portion, which allowed a long standing evolution 

of the fauna (Marques and Peña Cantero 2010; Miranda et al. 2013). The region is 

known as a biodiversity hotspot (Grange and Smith 2013; Kerr et al. 2018), but 

anthropogenic impacts are increasing, especially invasive species and tourism (Frenot et 

al. 2005; Lynch et al. 2010). 

Assemblage E7 encompass geographically disjointed Antarctic areas with 

similar hydroid faunas, suggesting a connection between the Wilkes Land coast (at east 

Antarctica) and the Weddell and the Ross seas (at west Antarctica) (Fig. 1a, 7; Online 

Resource Table S2). This pattern was previously described for sponges (Downey et al. 

2012) and is likely to be related to the opening of the trans-Antarctic passage ~60Ma 

(early Cenozoic), connecting east and west Antarctica through populations of the 

Weddell and the Ross seas, respectively (Linse et al. 2006; Marques and Peña Cantero 

2010; Gili et al. 2016). The subsequent glacial event in Antarctica (~40-30 Ma; Lawver 

and Gahagan 2003) might have contributed to the partial biogeographic isolation of 

these areas and the formation of an endemic biota distributed in different categories of 

endemicity, as for the hydroids (Fig. 3; Online Resource Table S1). 

BVSTEP results reinforce the importance of endemism in the biogeographic 

history of hydroids along SSA & A and emphasize the importance of the Magellan area 

as a center of endemism and transition area along the Pacific, Atlantic and Southern 

oceans. The ordination results underscore that the biogeographic patterning of hydroids 

along SSA & A is related to a combination of widely distributed species and those with 

restricted distribution ranges across the area. 

The hotspots of biodiversity herein proposed (e.g., the southeastern Pacific, the 

Magellan area, and the Antarctic Peninsula) were inferred mainly through the presence 

of endemic species and the level of environmental impact. Although endemism hotspots 

are more successful in capturing a great proportion of endemic species, species richness 
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and threatened species  (Orme et al. 2005), there is very low congruence among different   

types of hotspots in their ability to be efficient for conservation efforts (Orme et al.      

2005; Possingham and Wilson 2005; Thompson et al. 2020). The potential hotspots of   

biodiversity of hydroids herein defined for the assemblages of SSA & A may facilitate    

monitoring and conservation efforts within this broad region.     

CONCLUSIONS  

The hierarchical biogeographic patterns herein documented are scale dependent,     

reflecting an interaction of evolutionary and environmental factors, but also making  

them useful for investigating complex patterns of biodiversity (Willis and Whittacker      

2002). For both spatial resolutions (i.e., ecoregions and provinces), we found a clear    

separation between assemblages of SSA & A, as well   as different levels of faunistic   

affinities amongst their respective assemblages. The higher resolution analyses     

(ecoregions) show a more stratified biogeographic structure, revealing critical regions       

susceptible to loss of faunistic and habitat biodiversity (e.g., the southeastern Pacific    

coast, the subantarctic islands, the east coast of Antarctica). The lower resolution  

analyses (provinces) show a clear division between the Atlantic-Pacific, the Antarctic -

Subantartic provinces, and the high biogeographic isolation of the subantarctic islands  .  

Both resolutions show the Magellan area and the Scotia Arc as an important transition      

zone between SSA & A, although the Magellan area has a conflicting position    

concerning its  faunistic affinities (Fig. 7, 8).     

Using hydroids as a model allowed us to successfully examine biogeographic  

patterns and come to an improved understanding of species connectivity in the region.  

Their wide bathymetric and latitudinal distributions, their associations with different   

types of natural and artificial substrate, the high level of endemism across large-   scale 

areas, and the high variability in their life cycle strategies (Cornelius 1992; Gili and  

Hughes 1995), make hydroids an interesting and useful model to explore biogeogra   phy, 

connectivity, and endemism. Although exploring large-scale patterns through different  

spatial resolutions of SSA & A, this study is focused on coastal benthic areas.       

Additional integrative approaches involving data of the medusa stage and records from   

greater depths will further improve the biogeographic knowledge of hydrozoans       

inhabiting SSA & A. Similarly, expanding comparative studies to incorporate data from     

South Africa and Oceania are necessary to more thoroughly understand hydrozoan  

distributions in the southern hemisphere.  
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Table 1 Richness, average taxonomic distinctness (AvTD) and variation in taxonomic distinctness 

(VarTD) estimated for each ecoregion analyzed. Refer to Fig. 1 for ecoregions numbers. 

Ecoregion Species Genera Families Infraorders Suborders Orders Superorders AvTD VarTD 
76 23 19 13 9 9 4 2 79.39 413.34 
176 2 2 2 2 2 2 1 85.71 0 
177 14 8 8 6 6 4 2 68.29 815.44 
178 6 5 5 5 5 3 2 80.95 453.51 
180 85 46 26 14 12 7 2 79.80 466.02 
181 14 12 11 9 8 6 2 86.34 353.95 
182 10 9 9 9 8 5 2 86.03 258.40 
183 47 29 21 15 13 8 2 80.84 392.50 
184 35 22 16 12 11 6 2 78.03 438.31 
185 45 24 18 11 10 6 2 74.92 496.57 
186 20 11 9 6 5 3 1 68.72 476.02 
187 58 25 19 13 10 6 2 74.47 435.45 
188 9 7 7 6 6 3 2 79.76 401.08 
217 5 3 3 2 2 1 1 54.29 522.45 
218 6 5 5 3 3 2 1 66.67 426.30 
219 16 4 4 2 2 1 1 48.57 552.38 
220 17 4 4 2 2 1 1 44.33 580.07 
221 25 10 8 6 6 4 2 63.67 581.25 
222 69 16 13 9 9 6 2 63.62 548 
223 59 17 16 9 9 6 2 67.58 607.45 
224 30 12 12 8 8 5 2 66.93 530.07 
226 9 2 2 2 2 1 1 26.98 564.37 
227 38 9 9 8 8 5 2 61.80 734.58 
229 34 11 10 7 7 4 2 65.98 604.01 

Table 2 Richness, average taxonomic distinctness (AvTD) and variation in taxonomic distinctness 

(VarTD) estimated for each province analyzed. Refer to Fig. 1 for provinces acronyms. 

Province Species Genera Families Infraorders Suborders Orders Superorders AvTD VarTD 
A 39 12 12 9 9 5 2 60.90 633.92 
APF 15 9 8 5 5 3 2 68.03 635.66 
CHA 60 13 12 10 10 5 2 62.74 640.34 
M 81 35 22 14 11 7 2 75.67 449.51 
S 25 15 12 7 6 3 1 66.90 502.66 
SI 7 4 4 2 2 1 1 53.74 503.49 
SS 86 21 17 11 11 7 2 65.80 593.23 
TSWA 20 17 12 8 7 4 2 80.38 387.18 
WTSEP 14 9 8 6 6 4 2 71.11 672.70 
WTSWA 111 57 32 14 12 8 2 80.92 417.11 
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FIGURE CAPTIONS 

Fig. 1 Ecoregions (a) and provinces (b) for southern South America and Antarctica 

(modified from Spalding et al. 2007, 2012). 76: eastern Brazil; 176: Humboldtian; 177: 

central Chile; 178: Araucanian; 180: southeastern Brazil; 181: Rio Grande; 182: Rio de 

La Plata; 183: Uruguay-Buenos Aires shelf; 184: north Patagonian gulfs; 185: 

Patagonian shelf; 186: Malvinas/Falklands; 187: channels and fjords of southern Chile; 

188: Chiloense; 217: Bouvet Island; 218: Peter the First Islands; 219: South Sandwich 

Islands; 220: South Georgia; 221: South Orkney Islands; 222: South Shetlands Islands; 

223: Antarctic Peninsula; 224: east Antarctic Wilkes Land; 226: east Antarctic 

Dronning Maud Land; 227: Weddell Sea; 229: Ross Sea; TSWA: Tropical 

Southwestern Atlantic; WTSWA: Warm Temperate Southwestern Atlantic; M: 

Magellan; WTSEP: Warm Temperate Southeastern Pacific; S: Subantarctic; APF: 

Antarctic Polar Front; A: Antarctic; SS: Scotia Sea; CHA: Continental High Antarctica; 

SI: Subantarctic Islands 

Fig. 2 Distribution of the endemic and non-endemic species of hydroids sampled along 

southern South America and Antarctica. The graphics show the number of geographic 

locations (total: 1,360), non-endemic (total: 121) and endemic species (total: 128) 

examined by latitudinal band. 

Fig. 3 Number of endemic species of hydroids in each of the eight categories of 

endemicity recognized for the southern South America and Antarctica. “Total” is the 

total number of endemic species of hydroids recorded for the whole coast of SSA & A. 

The numbers in bold and between parenthesis are the percentages of endemic species of 

hydroids for each of the eight categories of endemicity for the SSA & A in relation to 

the “Total”. See Online Resource Table S1 for details on the endemic species 

distribution. 

Fig. 4 Sample-based rarefaction curves of species of hydroids from Southern South 

America and Antarctica ecoregions (a) and provinces (b). Refer to Fig. 1 for ecoregions 

numbers and provinces acronyms. 

Fig. 5 Funnel plots for the (a) average taxonomic distinctness (AvTD) and (b) variation 

in taxonomic distinctness (VarTD) simulated for each southern South American and 

Antarctic ecoregion. Dashed lines indicate the AvTD and VarTD for the master list of 
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species of hydroids. Black lines show the 95% probability interval for simulated AvTD 

and VarTD. Blue triangles and red crosses represent the ecoregions of SSA & A, 

respectively. Refer to Fig. 1 for ecoregions numbers. 

Fig. 6 Funnel plots for the (a) average taxonomic distinctness (AvTD) and (b) variation 

in taxonomic distinctness (VarTD) simulated for each southern South American and 

Antarctic province. Dashed lines indicate the AvTD and VarTD for the master list of 

species of hydroids. Black lines show the 95% probability interval for simulated AvTD 

and VarTD. Blue triangles and red crosses represent the provinces of SSA & A, 

respectively. Refer to Fig. 1 for provinces acronyms. 

Fig. 7 (a) Dendrogram and SIMPROF test among ecoregions from southern South 

America and Antarctica. Black lines indicate statistically significative clusters: E1 to E9 

for Antarctica, and E10 to E17 for SSA. (b) Non-metric multidimensional scaling 

(nMDS) ordination plot of southern South American (blue triangles) and Antarctic (red 

crosses) ecoregions. Refer to Fig. 1 for ecoregions numbers. 

Fig. 8 (a) Dendrogram and SIMPROF test among provinces from southern South 

America and Antarctica. Black lines indicate statistically significative clusters: P1 and 

P2 for SSA, and P3 to P7 for Antarctica. (b) Non-metric multidimensional scaling 

(nMDS) ordination plot of southern South American (blue triangles) and Antarctic (red 

crosses) provinces. Refer to Fig. 1 for provinces acronyms. 
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